(本题14分)口袋内有(
)个大小相同的球,其中有3个红球和
个白球.已知从
口袋中随机取出一个球是红球的概率是,且
。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
。
(Ⅰ)求和
;
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求
的分布列和期望
。
已知椭圆的左右焦点分别为
,点
为短轴的一个端点,
.
(1)求椭圆的方程;
(2)如图,过右焦点,且斜率为
的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
.
求证: 为定值.
已知函数,
.
(1)求的单调区间;
(2)当时,若对于任意的
,都有
成立,求
的取值范围.
已知正四棱柱中,
.
(1)求证:;
(2)求二面角的余弦值;
(3)在线段上是否存在点
,使得平面
平面
,若存在,求出
的值;若不存在,请说明理由.
某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取
道题,按照题目要求独立完成.规定:至少正确完成其中
道题的便可通过.已知
道备选题中应聘者甲有
道题能正确完成,
道题不能完成;应聘者乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性大?
已知函数.
(1)求的值;
(2)当时,求
的取值范围.