(本题15分)如图,在四棱锥中,
底面
,
,
,
,
,
是
的中点。
(Ⅰ)证明:;
(Ⅱ)证明:平面
;
(Ⅲ)求二面角的正切值.
在锐角中,
,
,
.
(I) 求角的大小;
(II)求的取值范围.
已知函数在
处取得极值.
(1)求实数的值;
(2)若关于的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)若,使
成立,求实数
的取值范围
某社区有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为
元
,在乙家租一张球台开展活动
小时的收费为
元
.试求
和
.
(2)问:小张选择哪家比较合算?为什么?
已知函数,
.
(1)当时,求曲线
在点
处的切线方程;
(2)若在区间
上是减函数,求
的取值范围.
已知函数(
)的最小正周期为
.
(1)求的值及函数
的单调递增区间;
(2)当时,求函数
的取值范围.