在直角坐标系xoy中,以o为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,M,N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求出M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.
都是锐角,且,,求的值.
为第二象限角,且,求的值.
已知抛物线 C 的顶点为 O(0,0) ,焦点 F 0 , 1
(Ⅰ)求抛物线 C 的方程; (Ⅱ)过F作直线交抛物线于 A,B 两点.若直线 OA,OB 分别交直线 l:y=x-2 于 M,N 两点,求 M N 的最小值.
已知 a ∈ R ,函数 f ( x ) = 2 x 3 - 3 ( a + 1 ) x 2 + 6 a x .
(Ⅰ)若 a = 1 ,求曲线 y = f ( x ) 在点 ( 2 , f ( 2 ) ) 处的切线方程; (Ⅱ)若 a > 1 ,求 f ( x ) 在闭区间 [ 0 , 2 a ] 上的最小值.
PC 如图,在四棱锥 P﹣ABCD 中, PA⊥面ABCD , AB=BC=2 , AD=CD= 7 , PA= 3 , ∠ABC=120° , G 为线段 PC 上的点. (Ⅰ)证明: BD⊥平面PAC ; (Ⅱ)若 G 是 PC 的中点,求 DG 与 PAC 所成的角的正切值; (Ⅲ)若 G 满足 PC⊥面BGD ,求 P G G C 的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号