如图,椭圆长轴端点为,
为椭圆中心,
为椭圆的右焦点,
且,
.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线
交椭圆于
两点,问:是否存在直线
,使点
恰为
的垂心?若存在,求出直线
的方程;若不存在,请说明理由.
设数列前n项和为Sn,且
(Ⅰ)求
的通项公式;
(Ⅱ)若数列{bn}满足b1=1且bn+1=bn+an(n≥1),求数列{bn}的通项公式
在中,角
所对的边分别为
,且满足
,
.(I)求
的面积;(II)若
,求
的值.
一批救灾物资随26辆汽车从某市以x km/h的速度匀速开往400km处的灾区,为安全起见,每两辆汽车的前后间距不得小于km,问这批物资全部到达灾区,最少要多少小时?
设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,求
的最小值。
等差数列{an}不是常数列,a5=10,且a5,a7,a10是某一等比数列{bn}的第1,3,5项.(1)求数列{an}的第20项。(2)求数列{bn}的通项公式.