如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。
小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D、C点的对称点分别为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值。
某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,其中14吨每吨按政府补贴优惠价收费,但超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为吨,应交水费为y元,写出y与
之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?
某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
(1)m=________%,这次共抽取________名学生进行调查,并补全条形图;
(2)如果该校共有1000名学生,请你估计该校骑自行车上学的学生约有多少名?
(3)根据本次调查,你获得了什么信息?(举出两个信息即可)
已知:如图,AB=AE,∠1=∠2,∠B =∠E,求证:BC=ED.
解不等式组:
先化简,再代数式的值,其中a=2.