(本题满分10分) 若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
已知 cos ( x - π 4 ) = 2 10 , x ∈ ( π 2 , 3 π 4 ) . (1)求 sin x 的值; (2)求 cos ( 2 x - π 3 ) 的值.
已知函数 f ( x ) = A sin ( 3 x + φ ) ( A > 0 , x ∈ ( - ∞ , + ∞ ) , 0 < φ < π ) 在x= x = π 12 时取得最大值4.. (1)求 f ( x ) 的最小正周期; (2)求 f ( x ) 的解析式; (3)若 f ( 2 3 α + π 12 ) = 12 5 .求 tan 2 α 的值.
如图,在△OAB中,已知P为线段AB上的一点,且||=2||. (Ⅰ)试用,表示; (Ⅱ)若=3,=2,且∠AOB=60°,求•的值.
已知 sin α = 5 5 ,且 α 是第一象限. (1)求 tan ( π + α ) + sin π 2 - α cos π - α 的值; (2)求 tan ( α + π 4 ) 的值.
已知函数f(x)=sinx+cosx. (1)若f(x)=2f(﹣x),求的值; (2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号