.(满分12分)已知:,当
时,
;
时,
(1)求的解析式
(2)c为何值时,的解集为R.
已知曲线的参数方程为
为参数,
),直线
在参数方程是
为参数),曲线
与直线
有一个公共点在
轴上,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系。
(1)求曲线的普通方程;
(2)若点在曲线
上,求
的值。
如图,是直角三角形,
.以
为直径的圆
交
于点
,点
是
边的中点.连结
交圆
于点
.
(Ⅰ)求证:、
、
、
四点共圆;
(Ⅱ )求证:
设函数,
.
(1) 若曲线在点
处的切线与直线
垂直,求
的单调递减区间和极小值(其中
为自然对数的底数);
(2)若对任意,
恒成立,求
的取值范围.
已知抛物线
(1)若点是抛物线
上一点,求证过点
的抛物线
的切线方程为:
;
(2)点是抛物线
准线上一点,过点
作抛物线的两条切线,切点分别为
,求
的最小值,并求相应的点
的坐标.
某种产品的广告费支出与销售额
(单位:万元)之间有如下对应数据:
![]() |
![]() |
![]() |
![]() |
![]() |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
若广告费支出与销售额
回归直线方程为
.
(1)试预测当广告费支出为12万元时,销售额是多少?
(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.