对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.
(本小题满分14分)
已知函数.]
(1)求函数的最小值和最小正周期;
(2)设的内角
、
、
的对边分别为
,
,
,且
,
,若
,求
,
的值.
(14分)已知函数的图象过原点,且关于点(-1,1)成中心对称.(1)求函数
的解析式;(2) 若数列
(nÎN*)满足:
,求数列
的通项公式
.
(13分)已知数列(
)的前
项的
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,记数列
的前n项和为
,求使
成立的最小正整数n的值。
(12分)已知数列的首项为
,通项
与前n项和
之间满足
(n≥2)。 (1)求证:
是等差数列,并求公差; (2)求数列
的通项公式。
(12分)锐角三角形ABC的内角A,B,C的对边分别为
(1)求B的大小;(2)求的取值范围.