对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.
已知函数,
.
1、当时,求满足
的实数
的范围;
2、若对任意的
恒成立,
求实数
的范围;
若存在使
对任意的
恒成立,其中
为大于1的正整数,求
的最小值.
函数的定义域为
,并满足以下条件:①对任意的
;
②对任意的,都有
;③
.
1、求的值;
2、求证:是
上的单调递增函数;
3、解关于的不等式:
如图,现有一块矩形空地,要在这块空地上开辟一个内
接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知
,
,且
,设
,绿地面积为
.
1、写出关于
的函数关系式,并指出其定义域;
2、当为何值时,绿地面积
最大?
已知函数
(1)若函数为奇函数,求实数
的值;
(2)在(1)的条件下,求函数的值域
计算:1、;
2、已知,求
的值.