铁路上A, B两站(两站间视为直线),相距25km,C,D为两村庄(视为两个点),DA⊥AB于A,CB⊥AB于B(如图),已知DA="15km,CB=10km," 现在要在铁路AB上建设一个土特产品收购站E,使得C,D两村庄到E站距离相等,则E站应建在距离A站多远处?
计算: .
如图1,在平面直角坐标系中,抛物线 与x轴交于A, 两点,点C在y轴上,且 ,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).
(1)求此抛物线的表达式;
(2)连接DE并延长交抛物线于点P,当 轴,且 时,求DP的长;
(3)连接BD.
①如图2,将△BCD沿x轴翻折得到△BFG,当点G在抛物线上时,求点G的坐标;
②如图3,连接CE,当 时,求 的最小值.
已知正方形ABCD,E为对角线AC上一点.
【建立模型】
(1)如图1,连接BE,DE.求证: ;
【模型应用】
(2)如图2,F是DE延长线上一点, ,EF交AB于点G.
①判断△FBG的形状并说明理由;
②若G为AB的中点,且AB=4,求AF的长.
【模型迁移】
(3)如图3,F是DE延长线上一点, ,EF交AB于点G, .求证: .
如图, 内接于 , 是 的直径,E是DB延长线上一点,且 .
(1)求证:CE是⊙O的切线;
(2)若 , ,求线段CE的长.
如图,B,C是反比例函数 (k≠0)在第一象限图象上的点,过点B的直线 与x轴交于点A, 轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.
(1)求此反比例函数的表达式;
(2)求△BCE的面积.