(本小题满分10分)
已知函数.
(1)若不等式的解集为
,求实数a的值;
(2)在(1)的条件下,若存在实数使
成立,求实数
的取值范围.
已知:方程
有两个不等的负根;
:方程
无实根.若
或
为真,
且
为假,求
的取值范围.
已知函数图像上点
处的切线方程与直线
平
行(其中),
(I)求函数的解析式; (II)求函数
上的最小值;
(III)对一切恒成立,求实数
的取值范围.
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段
的中点分别为
,且△
是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过做直线
交椭圆于P,Q两点,使
,求直线
的方程.
在四棱锥中,
⊥平面
,
,
,
,
,
是
的中点.
(Ⅰ)证明:⊥平面
;
(Ⅱ)若直线与平面
所成的角和
与平面
所成的角相等,求四棱锥
的体积.
已知焦点在轴上的双曲线
的两条渐近线过坐标原点,且两条渐近线与以
点为圆心,1为半径的圆相切,又知
的一个焦点与A关于直线
对称.
(1)求双曲线的方程;
(2)设直线与双曲线
的左支交于
,
两点,另一直线
经过
及
的中点,求直线
在
轴上的截距
的取值范围.