(本小题满分12分)已知直线经过椭圆
的左顶点A和上顶点D,椭圆
的右顶点为
,点
和椭圆
上位于
轴上方的动点,直线,
与直线
分别交于
两点。
(I)求椭圆的方程;
(Ⅱ)求线段MN的长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这
样的点,使得
的面积为
?若存在,确定点
的个数,若不存在,说明理由
(本小题满分12分)已知等差数列满足:
,
.
的前n项和为
.
(I)求及
; (II)令
(
),求数列
的前n项和
.
已知正数a, b, c满足a+b2c.
求证:.
(本小题共12分) 记关于的不等式
的解集为
,不等式
的解集为
.
(I)若,求
;
(II)若,求正数
的取值范围.
已知Sn是数列的前n项和,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,是否存在最大的正整数k,使得对于任意的正整数n,有
恒成立?若存在,求出k的值;若不存在,说明理由.
.已知方向向量为的直线l过椭圆
的焦点以及点(0,
),直线l与椭圆C交于 A 、B两点,且A、B两点与另一焦点围成的三角形周长为
.
(1)求椭圆C的方程;
(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点,
(O坐标原点),求直线m的方程.