在直角坐标系中,以O为极点,
轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为
,曲线
的参数方程为
,(
为参数,
)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
已知函数
(Ⅰ)求
最小正周期;
(Ⅱ)求
在区间
上的最大值和最小值.
设函数
.
(Ⅰ)讨论函数
在
内的单调性并判断有无极值,有极值时求出极值;
(Ⅱ)记
,求函数
在
(Ⅲ)在(Ⅱ)中,取 ,求 满足 时的最大值.
设椭圆
的方程为
,点
为坐标原点,点
的坐标为
,点
的坐标为
,点
在线段
上,满足
,直线
的斜率为
.
(Ⅰ)求
的离心率
;
(Ⅱ)设点
的坐标为
,
为线段
的中点,点N关于直线
的对称点的纵坐标为
,求
的方程.
如图所示,在多面体 ,四边形 , 均为正方形, 为 的中点,过 的平面交 于 .
(Ⅰ)证明:
;
(Ⅱ)求二面角
余弦值.
设
,
是曲线
在点
处的切线与
轴交点的横坐标.
(Ⅰ)求数列
的通项公式;
(Ⅱ)记
,证明
.