在直角坐标系中,以O为极点,
轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为
,曲线
的参数方程为
,(
为参数,
)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
已知椭圆(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
双曲线 (a>0,b>0)满足如下条件:(1) ab=
;(2)过右焦点F的直线l的斜率为
,交y轴于点P,线段PF交双曲线于点Q,且|PQ|:|QF|=2:1,求双曲线的方程.
已知椭圆,P为该椭圆上一点.
(1)若P到左焦点的距离为3,求到右准线的距离;
(2)如果F1为左焦点,F2为右焦点,并且,求
的值
命题方程
有两个不等的正实数根,命题
方程
无实数根若“
或
”为真命题,求
的取值范围
已知下列三个方程:至少有一个方程有实数根,求实数
的取值范围