已知10箱苹果,以每箱15千克为标准,超过15千克的数记为正数,不足15千克的数记为负数,称重记录如下:+0.2,—0.2,+0.7,—0.3,—0.4,+0.6,0,—0.1,+0.3,—0.2
(1)求10箱苹果的总重量;
(2)若每箱苹果的重量标准为100.5(千克),则这10箱有几箱不符合标准的?
解不等式组:.
计算:;
如图,已知平面直角坐标系中,点
,
为两动点,其中
,连结
,
.
(1)求证:;
(2)当时,抛物线经过
两点且以
轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线交
轴于点
,过点
作直线
交抛物线于
两点,问是否存在直线
,使
?若存在,求出直线
对应的函数关系式;若不存在,请说明理由.
已知等腰中,
,
平分
交
于
点,在线段
上任取一点
(
点除外),过
点作
,分别交
于
点,作
,交
于
点,连结
.
(1)求证:四边形为菱形;
(2)当点在何处时,菱形
的面积为四边形
面积的一半?
如图1,线段过圆心
,交圆
于
两点,
切圆
于点
,作
,垂足为
,连结
.
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线变为图2中割线
的情形,
与圆
交于
两点,
与
交于点
,
,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:.