(本小题满分14分)
已知椭圆的中心在坐标原点,两个焦点分别为
,
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆的方程;
(2) 是否存在满足的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
已知函数
(1)若的解集为
,求实数
的取值范围;
(2)在(1)的条件下,求函数f(x)在区间[0,3]的值域.
已知函数,其中
若
在x=1处取得极值,求a的值;
求
的单调区间;
(Ⅲ)若的最小值为1,求a的取值范围.
有标号为1,2,3,4,5的五个红球和标号为1,2的两个白球,将这七个球排成一排,使两端都是红球.
①如果每个白球两边都是红球,共有多少种不同的排法?
②如果1号红球和1号白球相邻排在一起,共有多少种不同的排法?
③同时满足条件①②的排法有多少种?
设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….
(1)求a1,a2;
(2)猜想数列{Sn}的通项公式,并给出严格的证明.
设函数f(x)=x3-(1+a)x2+4ax+24a,其中常数a>1.
(1)讨论f(x)的单调性;
(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.