商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?
某电器商经过多年的经验发现本店每个月售出的电冰箱的台数是一个随机变量,它的分布列如下:
![]() |
1 |
2 |
3 |
…… |
12 |
P |
![]() |
![]() |
![]() |
…… |
![]() |
设每售出一台电冰箱,电器商获利300元。如销售不出而囤积于仓库,则每台每月需花保养费100元。问电器商每月初购进多少台电冰箱才能使自己月平均收益最大?
若、
、
,且满足
,求
的最大值。
已知椭圆(
),过椭圆中心O作互相垂直的两条弦AC、BD,设点A、B的离心角分别为
和
,求
的取值范围。
)求证:(1)
(2)
一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.
(1)如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法?
(2)如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?