某商场将进价为2000元的冰箱以2400元出售,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的数量是y台,请写出y与x之间的函数关系式;(不要求写自变量的取值范围)
(2)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数关系式;(不要求写自变量的取值范围)
(3)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(本题12分)如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数图像的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F,已知B(1,3).
(1)k=;
(2)试说明AE=BF;
(3)当四边形ABCD的面积为时,求点P的坐标.
(本题12分)小刘有急事找同事小王,由于时间紧迫,找不到小王的手机号码。但小刘记得:小王手机号的最后一个数是5,且这11个数字之和是20的整数倍,他们的号码属于集团号(前8位号码相同).如果用x、y表示这两个记不清的数字,那么小王的手机号码为15335059 x y5.
⑴求x+y的值;
⑵求小刘一次拨对小王手机号码的概率.
(本题10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.
(1)若CD=16,BE=4,求⊙O的直径;
(2)若∠M=∠D,求∠D的度数.
(本题10分)已知:如图,一次函数的图象与反比例函数
的图象交于A、B两点,且点B的坐标为
.
(1)求反比例函数的表达式;
(2)点在反比例函数
的图象上,求△AOC的面积;
(3)在(2)的条件下,在坐标轴上找出一点P,使△APC为等腰三角形,请直接写出所有符合条件的点P的坐标.
(本题8分) 某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示。
如果随机抽取1名同学单独展示,那么女生展示的概率为;
(2)如果随机抽取2名同学共同展示,求同为男生的概率