我市某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为 A、 B、 C、 D、 E、五个组, x表示测试成绩),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.
A组:90≤ x≤100 B组:80≤ x<90 C组:70≤ x<80 D组:60≤ x<70 E组: x<60
(1)参加调查测试的学生共有 人;请将两幅统计图补充完整.
(2)本次调查测试成绩的中位数落在 组内.
(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?
计算:
如图,抛物线的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB =" 2OC=" 3.
(1)求a,b的值;
(2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=DQ,试求出y2关于x的函数关系式;
(3)在同一平面直角坐标系中,两条直线x = m,x = m+分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为
?若能,求出m的值;若不能,请说明理由.
△ABC中,∠A=90°,点D在线段BC上(端点B除外),∠EDB = ∠C,BE⊥DE于点E,DE与AB相交于点F.
(1)当AB = AC时(如图1)
①∠EBF= ▲ °;
②小明在探究过程中发现,线段FD 与BE始终保持一种特殊的数量关系,请你猜想这个关系,并利用所学知识证明猜想的正确性;
(2)探究:
当AB = kAC时(k>0,如图2),用含k的式子表示线段FD与BE之间的数量关系,请直接写出结果.
如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD3,AC=3
,求⊙O的半径长.
如图,过点B(2,0)的直线l:交y轴于点A,与反比例函数
的图象交于点C(3,n).、
(1)求反比例函数的解析式;
(2)将△OBC绕点O逆时针方向旋转α角(α为锐角),
得到△OB′C′.当OC′⊥AB时,求点C运动的路径长.