游客
题文

如图,A、B两座城市相距100千米,现计划在两城市间修筑一条高速公路(即线段AB).经测量,森林保护区中心P点既在A城市的北偏东30°的方向上,又在B城市的南偏东45°的方向上.已知森林保护区的范围是以P为圆心,35千米为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越森林保护区?请通过计算说明.
(参考数据:≈1.732,≈1.414)

科目 数学   题型 解答题   难度 较易
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转角(≠ 90°),得到Rt△边与AB所在直线交于点D,过点 D作DE∥边于点E,连接BE.

(1)如图1,当边经过点B时,= °;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3) 设 BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=
时,求AD的长,并判断此时直线与⊙E的位置关系.

已知抛物线(其中a ≠ c且a ≠0).
(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)
(2)若经过此抛物线顶点A的直线与此抛物线的另一个交点为
求此抛物线的解析式;
(3)点P在(2)中x轴上方的抛物线上,直线与 y轴的交点为C,若
,求点P的坐标;
(4)若(2)中的二次函数的自变量x在n≤x<(n为正整数)的范围内取值时,记它的整数函数值的个数为N, 则N关于n的函数关系式为 .

已知关于x的一元二次方程 .(其中m为实数)
(1)若此方程的一个非零实数根为k,
① 当k = m时,求m的值;
② 若记为y,求y与m的关系式;
(2)当<m<2时,判断此方程的实数根的个数并说明理由

请阅读下面材料:
是抛物线(a ≠ 0)上不同的两点,证明直线为此抛物线的对称轴.
有一种方法证明如下:





证明:∵是抛物线(a ≠ 0)上不同的两点,

.
①-②得 .
.
.
又∵ 抛物线(a ≠ 0)的对称轴为
∴ 直线为此抛物线的对称轴.
(1)反之,如果是抛物线(a ≠ 0)上不同的两点,直线为该抛物线的对称轴,那么自变量取时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数当x = 4时的函数值与x = 2007时的函数值相等,求x = 2012时的函数值.

已知:如图,AB是⊙O的直径,AC是弦,OD⊥AC于点E,交⊙O于点F,连接BF,CF,∠D=∠BFC.

(1)求证:AD是⊙O的切线;
(2)若AC=8,tanB =,求AD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号