(本题满分12分)在如图的多面体中,⊥平面
,
,
,
,
,
,
,
是
的中点.
(Ⅰ) 求证:平面
;
(Ⅱ) 求证:;
(Ⅲ) 求二面角的余弦值.
如图,一个小球从 处投入,通过管道自上而下落 或 或 。已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到 , , ,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量
为获得
(
)等奖的折扣率,求随机变量
的分布列及期望
;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量
为获得1等奖或2等奖的人次,求
.
在 中,角 所对的边分别为 ,已知 .
(I)求
的值;
(Ⅱ)当
时,求
及
的长.
在数列
中,
,且对任意
成等差数列,其公差为
.
(Ⅰ)若
,证明
成等比数列(
)
(Ⅱ)若对任意
,
成等比数列,其公比为
.证明:对任意
,有
已知函数 .
(Ⅰ)求函数
的单调区间和极值;
(Ⅱ)已知函数
的图象与函数
的图象关于直线
对称,证明当
时,
(Ⅲ)如果 ,且 ,证明
已知椭圆
的离心率
,连接椭圆的四个顶点得到的菱形的面积为4。
(1)求椭圆的方程;
(2)设直线
与椭圆相交于不同的两点
,已知点
的坐标为
,点
在线段
的垂直平分线上,且
,求
的值