以下是某地搜集到的新房屋的销售价格和房屋的面积
的数据:
房屋面积![]() |
110 |
90 |
80 |
100 |
120 |
销售价格(万元) |
33 |
31 |
28 |
34 |
39 |
(1)画出数据对应的散点图;
(2)求线性回归方程;
(3)据(2)的结果估计当房屋面积为时的销售价格.
(提示:,
,
,
)
(本小题满分14分)若数列的各项均为正数,
,
为常数,且
.
(1)求的值;
(2)证明:数列为等差数列;
(3)若,对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使
,
,
成等差数列?若存在,用k分别表示一组p和r;若不存在,请说明理由.
(本小题满分13分)设F1,F2分别是椭圆的左右焦点.
(1)若P是该椭圆上的一个动点,求的最大值和最小值.
(2)是否存在经过点A(5,0)的直线l与椭圆交于不同的两点C,D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
(本小题满12分)已知函数.
(1)若=0,判断函数
的单调性;
(2)若时,
<0恒成立,求
的取值范围.
(本小题满分12分)如图,在四棱锥中,底面
是矩形,
,
,
, N是棱
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)在棱SC上是否存在一点P,使得平面平面
?若存在,求出
的值;若不存在,说明理由.
(本小题满分12分)已知函数,
三个内角
的对边分别为
.
(Ⅰ)求的单调递增区间及对称轴的方程;
(Ⅱ)若,
,
,求角
的大小.