设,其中
.
(1)若有极值,求
的取值范围;
(2)若当,
恒成立,求
的取值范围.
已知实数a满足1<a≤2,设函数f (x)=x3-
x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于等于10.
在锐角△ABC中,cos B+cos (A-C)=sin C.
(Ⅰ) 求角A的大小;
(Ⅱ) 当BC=2时,求△ABC面积的最大值.
命题P:函数内单调递减;命题Q:曲线
轴交于不同的两点.
如果“P\/Q”为真且“P/\Q”为假,求a的取值范围.
已知函数
(I)若的一个极值点,求a的值;
(II)求证:当上是增函数;
(III)若对任意的总存在
成立,求实数m的取值范围。
已知函数,实数a,b为常数),
(1)若a=1,在(0,+∞)上是单调增函数,求b的取值范围;
(2)若a≥2,b=1,判断方程在(0,1]上解的个数