在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
附:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
已知
,
,点
的坐标为
.
(1)求当
时,点
满足
的概率;
(2)求当
时,点
满足
的概率.
某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.
(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.
已知动直线
与椭圆
交于
、
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明
和
均为定值;
(2)设线段
的中点为
,求
的最大值;
(3)椭圆
上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
如图,已知正方体
棱长为2,
、
、
分别是
、
和
的中点.
(1)证明:
面
;
(2)求二面角
的余弦值.
已知椭圆
的离心率为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)设直线
与椭圆
的交点为
,求弦长
.