游客
题文

设函数.
(1) 求的单调区间与极值;
(2)是否存在实数,使得对任意的,当时恒有成立.若存在,求的范围,若不存在,请说明理由.

科目 数学   题型 解答题   难度 容易
知识点: 组合几何
登录免费查看答案和解析
相关试题

已知曲线的极坐标方程为,曲线的极坐标方程为,曲线相交于两点.(
(Ⅰ)求两点的极坐标;
(Ⅱ)曲线与直线为参数)分别相交于两点,求线段的长度.

如图,已知圆与圆外切于点,直线是两圆的外公切线,分别与两圆相切于两点,是圆的直径,过作圆的切线,切点为.

(Ⅰ)求证:三点共线;
(Ⅱ)求证:.

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

已知函数.
(Ⅰ)若处相切,试求的表达式;
(Ⅱ)若上是减函数,求实数的取值范围;
(Ⅲ)证明不等式:.

四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求面与面所成二面角大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号