已知数列满足:
,
,
(其中
为非零常数,
).
(1)判断数列是不是等比数列?
(2)求;
(3)当时,令
,
为数列
的前
项和,求
.
(本题满分14分) 甲、乙两队各有n个队员,已知甲队的每个队员分别与乙队的每个队员各握手一次 (同队的队员之间不握手),从这n2次的握手中任意取两次.记
事件A:两次握手中恰有4个队员参与;
事件B:两次握手中恰有3个队员参与.
(Ⅰ) 当n=4时,求事件A发生的概率P(A);
(Ⅱ) 若事件B发生的概率P (B)<,求n的最小值.
(本题满分14分) 在△ABC中,角A,B,C所对的边为a,b,c,已知sin=
.
(Ⅰ) 求cos C的值;
(Ⅱ) 若△ABC的面积为,且sin2 A+sin2B=
sin2 C,
求a,b及c的值.
已知(其中
为实数).
(1)若在
处取得极值为2,求
的值;
(2)若在区间
上为减函数且
,求
的取值范围.
本题满分12分)
在一条笔直的工艺流水线上有三个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,每个工作台上有若干名工人.现要在
与
之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(1)若每个工作台上只有一名工人,试确定供应站的位置;
(2)设三个工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
奇函数的定义域为
,其中
为指数函数且过点(2,9).
(1)求函数
的解析式;
(2)若对任意的,不等式
恒成立,求实数
的取值范围.