某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:,
,…,
后得到如图的频率分布直方图.
(Ⅰ)求图中实数的值;
(Ⅱ)若该校高一年级共有学生500人,试估计该校高一年级在这次考试中成绩不低于60分的人数;
(Ⅲ)若从样本中数学成绩在与
两个分数段内的学生中随机选取两名学生,试用列举
法求这两名学生的数学成绩之差的绝对值不大于10的概率.
已知,其中
.
(1)求证:与
互相垂直;
(2)若与
大小相等,求
.
对于定义域为的函数
,如果存在区间
,同时满足:
①在
内是单调函数;②当定义域是
,
值域也是
,则称
是函数
的“好区间”.
(1)设(其中
且
),判断
是否存在“好区间”,并
说明理由;
(2)已知函数有“好区间”
,当
变化时,求
的最大值.
已知函数.
(1)设,试讨论
单调性;
(2)设,当
时,若
,存在
,使
,求实数
的
取值范围.
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.
(1)当=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.
是定义在
上的减函数,满足
.
(1)求证:;
(2)若,解不等式
.