设椭圆C: 过点, 且离心率.(Ⅰ)求椭圆C的方程;(Ⅱ)过右焦点的动直线交椭圆于点,设椭圆的左顶点为连接且交动直线于,若以MN为直径的圆恒过右焦点F,求的值.
设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
如果实数满足求: (1)的最值; (2)的最大值.
已知全集,集合,集合; (1)求集合、; (2)求.
已知函数,在时取得极值. (Ⅰ)求函数的解析式; (Ⅱ)若时,恒成立,求实数m的取值范围; (Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
在数列中,,且. (Ⅰ) 求,猜想的表达式,并加以证明; (Ⅱ)设,求证:对任意的自然数都有.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号