如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,
(1)当t=2时,求△PBQ的面积;
(2)当t=时,试说明△DPQ是直角三角形;
(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.
如图,在□ABCD中,AB=2 BC=4,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC
的顶点在格点上,称为格点三角形,试判断△ABC的形状.请说明理由.
已知:,
,
,请你
从中选出你喜欢的两个字母,并求出它们的和.
如图,□ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点.
求证:BE=DF.
某学校抽查了某班级某月10天的用电量,数据如下表(单位:度):
度数 |
8 |
9 |
10 |
13 |
14 |
15 |
天数 |
1 |
1 |
2 |
3 |
1 |
2 |
(1)求这个班级平均每天的用电量;
(2)已知该校共有20个班级,该月共计30天,试估计该校该月的用电量.