如图,四边形中,
为正三角形,
,
,
与
交于
点.将
沿边
折起,使
点至
点,已知
与平面
所成的角为
,且
点在平面
内的射影落在
内.
(Ⅰ)求证:平面
;
(Ⅱ)若已知二面角的余弦值为
,求
的大小.
(本小题满分12分)有一牛奶商店每瓶牛奶进价为0.80元,售价为1元,但牛奶必须于每晚进货,于次日早晨出售;昨晚进货不多可能会因供不应求减少可得利润,若进货过多,次日早晨卖不完,则不能再隔夜出售(牛奶会发酸变质),每剩一瓶则造成0.80元的损失,过去的经验可以作为未来发展的参考,历史上200天的销售记录如下:
日销售量 |
天数 |
概率 |
25瓶 |
20 |
0.10 |
26瓶 |
60 |
0.30 |
27瓶 |
100 |
0.50 |
28瓶 |
20 |
0.10 |
在统计的这200天当中,从未发生日销24瓶以下或29瓶以上的情况,我们可以假定日销24瓶以下或29瓶以上的情形不会发生,或者说此类事情发生的概率为零.作为经销商应如何确定每日进货数.
(本小题满分10分)已知向量.
(1)若求
的值;
(2)设,求
的取值范围.
已知椭圆(a>b>0)的离心率e=
,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为
(i)若,求直线l的倾斜角;
(ii)若点Q在线段AB的垂直平分线上,且
.求
的值.
四棱柱ABCD—A1B1C1D1的三视图和直观图如下
(1)求出该四棱柱的表面积;
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(3, ),求|PA|+|PB|的值.