如图,四边形中,
为正三角形,
,
,
与
交于
点.将
沿边
折起,使
点至
点,已知
与平面
所成的角为
,且
点在平面
内的射影落在
内.
(Ⅰ)求证:平面
;
(Ⅱ)若已知二面角的余弦值为
,求
的大小.
已知函数f(x)=﹣
+3(﹣1≤x≤2).
(1)若λ=时,求函数f(x)的值域;
(2)若函数f(x)的最小值是1,求实数λ的值.
函数是奇函数.
(1)求的值;
(2)判断在区间
上单调性并加以证明;
设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若G(x)=在区间[1,2]上是增函数,求实数k的取值范围。
设函数f(x)=,则:
(1)证明:f(x)+f(1﹣x)=1;
(2)计算:f()+f(
)+f(
)+…+f(
).
(1)计算:+lg25+lg4+
+
;
(2)设集合A={x|≤2﹣x≤4},B={x|m﹣1<x<2m+1}.若A∪B=A,求m的取值范围.