若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知曲线C的参数方程为(为参数,).求曲线C的普通方程。
解不等式:
如图,四边形中(图1),,中点为,将图1沿直线折起,使二面角为(图2) (1)过作直线平面,且平面=,求的长度。 (2)求直线与平面所成角的正弦值。
已知三棱锥中,,平面,分别是直线上的点,且 (1) 求二面角平面角的余弦值 (2) 当为何值时,平面平面
如图:三棱柱中,,,侧棱底面,为的中点,为边上的动点。 (1)若为中点,求证:平面 (2)若,求四棱锥的体积。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号