已知直线
过定点
,动点
满足
,动点
的轨迹为
.
(Ⅰ)求
的方程;
(Ⅱ)直线
与
交于
两点,以
为切点分别作
的切线,两切线交于点
.
①求证:
;②若直线
与
交于
两点,求四边形
面积的最大值.
如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B、C,
的平分线分别交AB、AC于点D、E.
(Ⅰ)证明:
(Ⅱ)若AC=AP,求
的值
已知函数
,
.
(Ⅰ)判定
在
上的单调性;
(Ⅱ)求
在
上的最小值;
(Ⅲ)若
,
,求实数
的取值范围.
如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点且
为钝角,若
,
.
(Ⅰ)求曲线
和
的方程;
(Ⅱ)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.
已知四边形
满足
∥
,
,
是
的中点,将
沿着
翻折成
,使面
面
,
为
的中点. 
(Ⅰ)求四棱
的体积;
(Ⅱ)证明:
∥面
;
(Ⅲ)求面
与面
所成二面角的余弦值.
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如右图).记成绩不低于90分者为“成绩优秀”.
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为
,求
的分布列和数学期望;
(II)根据频率分布直方图填写下面
列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关。