如图,在四棱锥中,底面
为直角梯形,且
,
,侧面
底面
. 若
.
(Ⅰ)求证:平面
;
(Ⅱ)侧棱上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.
附加题) 已知的极坐标方程分别是
(a是常数).
(1)分别将两个圆的极坐标方程化为直角坐标方程;
(2)若两个圆的圆心距为的值。
附加题) 已知矩阵,
(1)计算AB;
(2)若矩阵B把直线的方程。
若存在实数k,b,使得函数和
对其定义域上的任意实数x同时满足:
,则称直线:
为函数
的“隔离直线”。已知
(其中e为自然对数的底数)。试问:
(1)函数的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由。
已知函数
(1)若函数的图象的一个公共点恰好在x轴上,求a的值;
(2)若p和q是方程的两根,且满足
证明:
当
设,函数
(1)求m的值,并确定函数的奇偶性;
(2)判断函数的单调性,并加以证明。