《愤怒的小鸟》是一款时下非常流行的游戏,故事也相当有趣,如图11甲所示,为了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示.h1=0.8 m,l1=2 m,h2=2.4 m,l2=1 m (取重力加速度g=10 m/s2):
(1)肥猪A在台面草地的右边缘,若要击中A,小鸟的初速度为多大?
(2)小鸟弹出后能否直接打中地面草地上肥猪的堡垒?请列式计算进行说明。
(3)如果小鸟弹出后,先掉到台面的草地上,接触地面瞬间竖直速度变为零,水平速度不变,小鸟在草地上滑行一段距离后飞出,若要打中肥猪的堡垒,小鸟和草地间的动摩擦因数μ与小鸟弹出时的初速度v0应满足什么关系(用题中所给的符号h1、l1、h2、l2、g表示)?
水上滑梯可简化成如图所示的模型:倾角为θ=37°斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0m,BC长d=2.0m,端点C距水面的高度h="1.0m." 一质量m=50kg的运动员从滑道起点A点无初速地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.10,(cos37°=0.8,sin37°=0.6,运动员在运动过程中可视为质点)求:
(1)运动员沿AB下滑时加速度的大小a;
(2)运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时速度的大小υ;
(3)保持水平滑道端点在同一竖直线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B′C′距水面的高度h′。
甲图为质谱仪的原理图.带正电粒子从静止开始经过电势差为U的电场加速后,从G点垂直于MN进入偏转磁场.该偏转磁场是一个以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B,带电粒子经偏转磁场后,最终到达照相底片上的H点.测得G、H间的距离为d,粒子的重力忽略不计.
(1)设粒子的电荷量为q,质量为m,试证明该粒子的比荷为:;
(2)若偏转磁场的区域为圆形,且与MN相切于G点,如图乙所示,其它条件不变。要保证上述粒子从G点垂直于MN进入偏转磁场后不能打到MN边界上(MN足够长),求磁场区域的半径应满足的条件。
有三根长度皆为L="2.00" m的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的O点,另一端分别拴有质量皆为m=1.00×10-2 kg的带电小球A和B,它们的电量分别为+q和-q,q=1.00×10-7 C.A、B之间用第三根线连接起来.空间中存在大小为E=1.00×106 N/C的匀强电场,场强方向沿水平向右,平衡时A、B球的位置如图所示.现将O、B之间的线烧断,由于有空气阻力,A、B球最后会达到新的平衡位置.(忽略电荷间相互作用力)
(1)在细线OB烧断前,AB间细绳中的张力大小.
(2)当细绳OB烧断后并重新达到平衡后细绳AB中张力大小?
(3)在重新达到平衡的过程中系统克服空气阻力做了多少的功?
如图所示,在绝缘水平面上相距为L的A、B两点分别固定着等量正点电荷.O为AB连线的中点,C、D是AB连线上两点,其中AC=CO=OD=DB=1/4L.一质量为m电量为+q的小滑块(可视为质点)以初动能E从C点出发,沿直线AB向D运动,滑块第一次经过O点时的动能为kE(k>1),到达D点时动能恰好为零,小滑块最终停在O点,求:
(1)小滑块与水平面之间的动摩擦因数μ.
(2)OD两点间的电势差UOD.
(3)小滑块运动的总路程s.
宇航员在月球表面完成下面的实验:在一固定的竖直光滑圆轨道内部最低点静止一个质量为m的小球(可视为质点),如图所示.当给小球一瞬间的速度v时,刚好能使小球在竖直平面内做完整的圆周运动,已知圆弧的轨道半径为r,月球的半径为R1,引力常量为G.求:
(1)若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?
(2)轨道半径为2R1的环月卫星周期为多大?