下表提供了某厂节能降耗技术发行后,生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)求线性回归方程所表示的直线必经过的点;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
并预测生产1000吨甲产品的生产能耗多少吨标准煤?
(参考:)
已知{an}是
等比数列,a1=2,a3=18,{bn}是等差数列b1=2,b1+b2+b3+b4=a1+a2+a3>20
(1)求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn;
(3)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n="1," 2……,试比较Pn与Qn的大小并证明你的结论。
已知y=,试求它的反函数以及反函数的定义域和值域。
求函数y=-(log)2-
(log
)+5在2≤x≤4范围内的最大值和最小值,以及对应的x的值。
(1)已知a2x-3x+1>ax
+2x-1(a>0且a≠1)求x的取值范围。
(2)求函数y=的定义域以及单调递增区间。
已知等差数列{an}的前n项中a1是最小的,且a1+a4=6,a2·a3=5,Sn=150,求n的值。