游客
题文

在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.
(1)求运往两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?
(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:

 
A地
B地
C地
运往D地(元/立方米)
22
20
20
运往E地(元/立方米)
20
22
21

在(2)的条件下,请说明哪种方案的总费用最少?

科目 数学   题型 解答题   难度 中等
知识点: 含绝对值的一元一次不等式
登录免费查看答案和解析
相关试题

国家环保部发布的(环境空气质量标准)规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.PM2.5的24小时平均浓度不得超过75微克/立方米,某市环保部门随机抽取了一居民区去年若干天PM2.5的24小时平均浓度的监测数据,并统计如下:

PM浓度(微克/立方米)
日均值
频数(天)
频率
0<x<2.5
12.5
5
0.25
2.5<x<50
37.5
a
0.5
50<x<75
62.5
b
c
75<x<100
87.5
2
0.1


(1)求出表中a、b、c的值,并补全频数分布直方图.
(2)从样本里PM2.5的24小时平均浓度不低于50微克/立方米的天数中,随机抽取两天,求出“恰好有一天PM2.5的24小时平均浓度不低于75微克/立方米”的概率.
(3)求出样本平均数,从PM2.5的年平均浓度考虑,估计该区居民去年的环境是否需要改进?说明理由.

如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.

在水果店里,小李买了5kg苹果,3kg梨,老板少要2元,收了50元;老王买了11kg苹果,5kg梨,老板按九折收钱,收了90元,该店的苹果和梨的单价各是多少元?

先化简:,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.

在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连接QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.

(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;
(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号