已知关于的方程
=1,其中
为实数.
(1)若=1-
是该方程的根,求
的值.
(2)当>
且
>0时,证明该方程没有实数根.
已知向量,
,设函数
.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)在中,边
分别是角
的对边,角
为锐角,若
,
,
的面积为
,求边
的长.
设为实数,函数
.
(1)若,求
的取值范围;
(2)讨论的单调性;
(3)当时,讨论
在区间
内的零点个数.
已知椭圆的一个焦点为
,离心率为
.
(1)求椭圆的标准方程;
(2)若动点为椭圆
外一点,且点
到椭圆
的两条切线相互垂直,求点
的轨迹方程.
设数列的前
项和为
,
.已知
,
,
,且当
时,
.
(1)求的值;
(2)证明:为等比数列;
(3)求数列的通项公式.
某车间名工人年龄数据如下表:
年龄(岁) |
工人数(人) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
(1)求这名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这名工人年龄的茎叶图;
(3)求这名工人年龄的方差.