对于三次函数。
定义:(1)设是函数
的导数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”;
定义:(2)设为常数,若定义在
上的函数
对于定义域内的一切实数
,都有
成立,则函数
的图象关于点
对称。
己知,请回答下列问题:
(1)求函数的“拐点”
的坐标
(2)检验函数的图象是否关于“拐点”
对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是
(不要过程)
已知函数.
(Ⅰ)求函数最大值和最小正周期;
(Ⅱ)设的内角
的对边分别为
,且
,若
,求
的值
若均为正实数,并且
,求证:
以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:
,曲线C2的参数方程为:
,点N的极坐标为
.
(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;
(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.
如图,已知圆⊙O1与圆⊙O2外切于点P,过点P的直线交圆⊙O1于A,交圆⊙O2于B,AC为圆⊙O1直径,BD与⊙O2相切于B,交AC延长线于D.
(Ⅰ)求证:
(Ⅱ)若BC、PD相交于点M,则
已知函数.
(Ⅰ)若函数在区间上存在极值,求实数
的取值范围;
(Ⅱ)如果当时,不等式
恒成立,求实数
的取值范围,并且判断代数式
的大小.