游客
题文

在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.
(1)定义横、纵坐标为整数的点为“整点”. 在区域中任取3个“整点”,求这些“整点”中恰好有2个“整点”落在区域中的概率;
(2)在区域中每次任取一个点,连续取3次,得到3个点,记这3个点落在区域中的个数为,求的分布列和数学期望.

科目 数学   题型 解答题   难度 容易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

如图,长方体 ABCD- A 1 B 1 C 1 D 1的底面 ABCD是正方形,点 E在棱 AA 1上, BEEC 1.

(1)证明: BE⊥平面 EB 1 C 1

(2)若 AE= A 1 E,求二面角 B- EC- C 1的正弦值.

已知abc为正数,且满足abc=1.证明:

(1) 1 a + 1 b + 1 c a 2 + b 2 + c 2

(2) ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 24

在直角坐标系xOy中,曲线C的参数方程为 x = 1 - t 2 1 + t 2 y = 4 t 1 + t 2 t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 2 ρ cos θ + 3 ρ sin θ + 11 = 0

(1)求Cl的直角坐标方程;

(2)求C上的点到l距离的最小值.

为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 - 1 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 - 1 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为αβ,一轮试验中甲药的得分记为X

(1)求 X 的分布列;

(2)若甲药、乙药在试验开始时都赋予4分, p i ( i = 0 , 1 , , 8 ) 表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则 p 0 = 0 p 8 = 1 p i = a p i - 1 + b p i + c p i + 1 ( i = 1 , 2 , , 7 ) ,其中 a = P ( X = - 1 ) b = P ( X = 0 ) c = P ( X = 1 ) .假设 α = 0 . 5 β = 0 . 8

(i)证明: { p i + 1 - p i } ( i = 0 , 1 , 2 , , 7 ) 为等比数列;

(ii)求 p 4 ,并根据 p 4 的值解释这种试验方案的合理性.

已知函数 f ( x ) = sin x - ln ( 1 + x ) f ' ( x ) f ( x ) 的导数.证明:

(1) f ' ( x ) 在区间 ( - 1 , π 2 ) 存在唯一极大值点;

(2) f ( x ) 有且仅有2个零点.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号