若存在实常数和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知
,
为自然对数的底数).
(1)求的极值;
(2)函数和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(本小题满分15分)已知椭圆的左右焦点
,离心率为
,双曲线方程为
,直线
与双曲线的交点为
且
.
(Ⅰ)求椭圆与双曲线的方程;
(Ⅱ)过点的直线
与椭圆交于
两点,交双曲线与
两点,当
(
为椭圆的左焦点)的内切圆的面积取最大值时,求
的面积.
(本小题满分15分)如图,在三棱锥中,
⊥平面
,
,
,
,
,
分别是
,
,
,
的中点,
,
与
交于点
,
与
交于点
,连结
.
(Ⅰ)求证:;
(Ⅱ)求平面与平面
所成角的正弦值.
(本小题满分14分)设数列的前
项和为
,点
在直线
上.
(Ⅰ)求数列的通项公式;
(Ⅱ)在与
之间插入
个数,使这
个数组成公差为
的等差数列,求数列
的前
项和
,并求使
成立的正整数
的最大值.
(本题满分14分)已知中,
,
,
分别为角
,
,
所对的边,
.
(Ⅰ)求的值;
(Ⅱ)若的面积为
,
,求
、
的长.
已知函数.
(Ⅰ)求函数的值域;
(Ⅱ)设,证明
.