如图,直角三角形的顶点坐标
,直角顶点
,顶点
在
轴上,点
为线段
的中点
(Ⅰ)求边所在直线方程;
(Ⅱ)为直角三角形
外接圆的圆心,求圆
的方程;
(Ⅲ)若动圆过点
且与圆
内切,求动圆
的圆心
的轨迹方程.
设数列{an}满足a1=1,an=
(1)求a2、a3、a4、a5;
(2)归纳猜想数列的通项公式an,并用数学归纳法证明;
(3)设bn={anan+1},求数列{bn}的前n项和Sn。
定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
已知函数;
.
(1)当时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数在
上是以3为上界的有界函数,求实数
的取值范围;
(3)若,函数
在
上的上界是
,求
的取值范围.
由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y="f" -1(x)能确定数列{bn},bn=" f" –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=确定数列{an}的自反数列为{bn},求an;
(2)已知正数数列{cn}的前n项之和Sn=(cn+
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.
设;
(1)求的值域;
(2)若(
),试问实数
为何值时,
恒成立?
在中,
是三角形的内角,
是三内角对应的三边,
已知,
。(1)求
;(2)求
的面积S