已知函数,
为正整数.
(Ⅰ)求和
的值;
(Ⅱ)数列的通项公式为
(
),求数列
的前
项和
;
(Ⅲ)设数列满足:
,
,设
,若(Ⅱ)中的
满足:对任意不小于3的正整数n,
恒成立,试求m的最大值.
如图,椭圆的上、下顶点分别为A、B,已知点B在直线
上,且椭圆的离心率
.
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ的中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.
(1)求证:DE∥平面BCP;
(2)求证:四边形DEFG为矩形;
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
某班同学利用国庆节进行社会实践,对岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求、
、
的值;
(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,求选取的
名领队中恰有1人年龄在
岁的概率.
已知锐角中内角
、
、
的对边分别为
、
、
,
,且
.
(Ⅰ)求角的值;
(Ⅱ)设函数,
图象上相邻两最高点间的距离为
,求
的取值范围.
(本小题满分10分)选修4—5:不等式选讲
设函数.
(1)当时,解不等式
;
(2)若的解集为
,
,求证:
.