如图,M、N、T和P、Q、R分别在同一直线上,且∠1=∠3,∠P=∠T,说明∠M=∠R的理由
如图1,在,将一块与
全等的三角板的直角顶点放在点C上,一直角边与BC重叠。
(1)操作1:固定,将三角板沿
方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿
方向平移的距离为___________;
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度,如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
如图,根据图中数据解答下列问题.
(1)sin2A1+sin2B1=________;
sin2A2+sin2B2=________;
sin2A3+sin2B3=________.
观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=________.
(2)如图④,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,利用三角函数的定义和勾股定理,证明(1)中的猜想.
(3)已知∠A+∠B=90°,且,求sinB.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4
,求AE的长.
已知:如图,点在
的直径
的延长线上,点
在
上,且
,∠
.
(1)求证:是
的切线;
(2)若的半径为2,求图中阴影部分的面积.
(1)如图①,用尺规作图作出圆的一条直径EF(不写作法,保留作图痕迹);
(2)如图②,A、B、C、D为圆上四点,AB∥CD,AB<CD,请只用无刻度的直尺,画出圆的一条直径EF(不写画法,保留画图痕迹).