在某国际高端经济论坛上,前六位发言的是与会的含有甲、乙的6名中国经济学专家,他们的发言顺序通过随机抽签方式决定.
(Ⅰ)求甲、乙两位专家恰好排在前两位出场的概率;
(Ⅱ)发言中甲、乙两位专家之间的中国专家数记为,求
的分布列和数学期望.
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.
已知函数的导函数为
,
的图象在点
,
处的切线方程为
,且
,直线
是函数
的图象的一条切线.
(1)求函数的解析式及
的值;
(2)若对于任意
,
恒成立,求实数
的取值范围.
如图,焦距为的椭圆
的两个顶点分别为
和
,且
与n
,
共线.
(1)求椭圆的标准方程;
(2)若直线与椭圆
有两个不同的交点
和
,且原点
总在以
为直径的圆的内部,
求实数的取值范围.
若正数项数列的前
项和为
,首项
,点
,
在曲线
上.
(1)求,
;
(2)求数列的通项公式
;
(3)设,
表示数列
的前项和,若
恒成立,求
及实数
的取值范围.
如图,三角形中,
,
是边长为
的正方形,平面
⊥底面
,若
、
分别是
、
的中点.
(1)求证:∥底面
;
(2)求证:⊥平面
;
(3)求几何体的体积.