已知数列{an}中,a2=1,前n项和为Sn,且.
(1)求a1,a3;
(2)求证:数列{an}为等差数列,并写出其通项公式;
(3)设,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
如图,在△中,
,
为
中点,
.记锐角
.且满足
.
(1)求;
(2)求边上高的值.
已知各项均为正数的数列{a}满足a
=2a
+a
a
,且a
+a
=2a
+4,其中n∈N
.
(Ⅰ)若b=
,求数列{b
}的通项公式;
(Ⅱ)证明:+
+…+
>
(n≥2).
如图,已知椭圆C:+
=1(a>b>0)的左、右焦点分别为F
、F
,A是椭圆C上的一点,AF
⊥F
F
,O是坐标原点,OB垂直AF
于B,且OF
=3OB.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x+y
=t
上任意点M(x
,y
)处的切线交椭圆C于Q
、Q
两点,那么OQ
⊥OQ
”成立.
已知函数f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函数f(x)在区间[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范围.
如图,三棱柱ABC-AB
C
的侧面A
ACC
与底面ABC垂直,AB=BC=CA=4,且AA
⊥A
C,AA
=A
C.
(Ⅰ)证明:AC⊥BA;
(Ⅱ)求侧面AABB
与底面ABC所成二面角的余弦值.