如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(Ⅰ)求证:平面PAB⊥平面PAD;(Ⅱ)设AB=AP.(ⅰ) 若直线PB与平面PCD所成的角为30°,求线段AB的长;(ⅱ) 在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.
已知、、,,求证
若复数,求实数使成立.(其中为的共轭复数)
(本小题满分13分) (Ⅰ)求a2,a3,a4 (Ⅱ)猜想an;(不用证明)
(本大题满分13分) 已知双曲线与椭圆有共同的焦点,点在双曲线C上. (1)求双曲线C的方程; (2)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.
本题满分13分 设复数,试求m取何值时 (1)Z是实数;(2)Z是纯虚数;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号