(本大题满分13分)
已知双曲线与椭圆
有共同的焦点,点
在双曲线C上.
(1)求双曲线C的方程;
(2)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.
(本小题满分10分)建造一个容积为8立方米,深为2米的长方体无盖水池,如果池底与池壁的造价每平方米分别是120元和80元,求水池的最低总造价是多少元?
(本小题满分12分)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,.
(Ⅰ)求的值;
(Ⅱ)设的值。
已知f(x)=在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
设定义在R上的函数f(x)=ax3+bx2+cx+d满足:①函数f(x)的图像过点P(3,-6);②函数f(x)在x1,x2处取极值,且|x1-x2|=4;③函数y=f(x-1)的图像关于点(1,0)对称。(1)求f(x)的表达式;(2)若α,β∈R,求证;(3)求过点P(3,-6)与函数f(x)的图像相切的直线方程。
随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员人(140<
<420,且
为偶数),每人每年可创利
万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利
万元,但公司需付下岗职员每人每年
万元的生活费,并且该公司正常运转所需人数不得小于现有职员的
,为获得最大的经济效益,该公司应裁员多少人?