若复数,求实数
使
成立.(其中
为
的共轭复数)
已知数列中,
,满足
。
(1)求证:数列为等差数列;
(2)求数列的前
项和
.
已知函数f(x)=lnx,g(x)=k·.
(I)求函数F(x)= f(x)- g(x)的单调区间;
(Ⅱ)当x>1时,函数f(x)> g(x)恒成立,求实数k的取值范围;
(Ⅲ)设正实数a1,a2,a3,,an满足a1+a2+a3++an=1,
求证:ln(1+)+ln(1+
)++ln(1+
)>
.
数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n
·bn+1(
为常数,且
≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+
+
++
与了
Sn的大小.
已知向量=(
sin2x+2,cosx),
=(1,2cosx),设函数f(x)=
·
.
(I)求f(x)的最小正周期与单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且
=
=
.
(Ⅰ)求证:直线ER与GR′的交点P在椭圆:
+
=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为
,求证:直线MN过定点;并求△GMN面积的最大值.