游客
题文

【2015江苏高考,17】(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型.

(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式,并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,四边形ABCD为矩形,AD 平面ABE,AE=EB=BC=2,F为CE上的点.且BF 平面ACE.

(1)求证:平面ADE平面BCE;
(2)求四棱锥E-ABCD的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN平面DAE.

为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:

分组
频数
频率
60.5~70.5

0.16
70.5~80.5
10

80.5~90.5
18
0.36
90.5~100.5


合计
50


(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…799, 试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内) ,并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的约多少人?

设命题p:函数的定义域为R;命题q:不等式对一切实数均成立。
(1)如果p是真命题,求实数的取值范围;
(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围。

已知函数
⑴当时,①若的图象与的图象相切于点,求的值;
上有解,求的范围;
⑵当时,若上恒成立,求的取值范围.

如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.

⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号