已知三棱锥的底面
是直角三角形,且
,
平面
,
,
是线段
的中点,如图所示.
(Ⅰ)证明:平面
;
(Ⅱ)求三棱锥的体积.
在数和
之间插入
个实数,使得这
个实数构成递增的等比数列,将这
个数的乘积记作
,再令
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.
在中,
、
、
分别是三内角A、B、C的对应的三边,已知
(1)求角C的大小;
(2)满足的
是否存在?若存在,求角A的大小.
在中,内角
,
,
所对的边分别为
,
,
,已知
,
=
.
(1)求的值;
(2)若的面积为3,求
的值.
设函数f(x)=ln+
(a>0).
(1)若函数f(x)在区间(2,4)上存在极值,求实数a的取值范围;
(2)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(3)求证:当n∈N*且n≥2时,+
+
+…+
<ln n.
已知椭圆的离心率为
,以原点
为圆心,椭圆
的长半轴为半径的圆与直线
相切.
(1)求椭圆标准方程;
(2)已知点为动直线
与椭圆
的两个交点,问:在
轴上是否存在点
,使
为定值?若存在,试求出点
的坐标和定值,若不存在,说明理由.