已知数列{}满足
=1,
=
,(1)计算
,
,
的值;(2)归纳推测
,并用数学归纳法证明你的推测.
(本小题满分12分)
张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为
,
.
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生分析上述两条路线中,选择
哪条上班路线更好些,并说明理由.
(本小题满分12分)
如图,四边形是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(Ⅰ)求证:平面⊥平面
;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)
已知函数最小正周期为
.
(I)求的值及函数
的解析式;
(II)若的三条边
,
,
满足
,
边所对的角为
.求角
的取值范围及函数
的值域.
(本小题满分14分)
已知函数的图象过坐标原点O, 且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值
(本小题满分12分)
设椭圆:
的焦点分别为
、
,抛物线
:
的准线与
轴的交点为
,且
.
(I)求的值及椭圆
的方程;
(II)过、
分别作互相垂直的两直线与椭圆分别交于
、
、
、
四点(如图),
求四边形面积的最大值和最小值.