为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:
登记所需时间 |
1 |
2 |
3 |
4 |
5 |
频率 |
0.1 |
0.4 |
0.3 |
0.1 |
0.1 |
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.
选修4-5:不等式选讲
设函数.
(Ⅰ)当时,若不等式
的解集为
或
,求
的值;
(Ⅱ)若对
恒成立,求
的取值范围.
选修4-4:坐标系与参数方程
已知曲线C的极坐标方程为,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
经过定点
,倾斜角为
.
(Ⅰ)写出直线的参数方程和曲线C的标准方程;
(Ⅱ)设直线与曲线C相交于A、B两点,求
的值.
已知.
(Ⅰ)若的单调减区间是
,求实数
的值;
(Ⅱ)设有两个极值点
, 且
若
恒成立,求
的最大值.
设是圆
上的点,过
作直线
垂直
轴于点
,
为
上一点,且
,当点
在圆上运动时,记点
的轨迹为曲线
.
(Ⅰ)求曲线的方程;
(Ⅱ)设过点的直线与曲线
交于
两点,且满足
.
(1)若,求
的值;
(2)若分别为曲线
的左、右顶点,证明:
如图,在多面体中,四边形
是平行四边形,
,
,若
是等边三角形,且
,
.
(Ⅰ)求证:面
;
(Ⅱ)求二面角的余弦值的大小.