为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:
登记所需时间 |
1 |
2 |
3 |
4 |
5 |
频率 |
0.1 |
0.4 |
0.3 |
0.1 |
0.1 |
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.
小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该年每年的运输收入均为25万元,小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第年年底出售,其销售价格为
万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=运输累计收入+销售收入-总支出)
在平面直角坐标系中,已知点,点B在直线
上运动,过点B与
垂直的直线和线段AB的垂直平分线相交于点M.
(1)求动点M的轨迹E的方程;
(2)过(1)中轨迹E上的点作轨迹E的切线,求切线方程.
设数列为等差数列,且
;数列
的前n项和为
,且
.
(1)求数列的通项公式;
(2)若,
为数列
的前n项和,求
.
设的内角A,B,C所对的边长分别为
,b,c,且
,
.
(1)若,求a的值;
(2)若的面积为3,求
的值.
已知,P:
,q:
.
(1)若p是q的充分条件,求实数m的取值范围;
(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.